2019 Super STEM Saturday

Air STEM Activities

- "Fizzy" Rocket Propulsion
- "Cargo" Plane
- "Hovering" Balloon Pilot

"Fizzy" Rocket Propulsion

- Purpose
 - Design and build a rocket with propulsion system. Launch rocket into the air from the launch pad and measure height.
- Vetted (Time) 50min
- Agenda
 - o Decorate Paper
 - Cut shapes (nose cone, body, fins)
 - Assemble Rocket (canister to body, attach nose cone and fins)
 - Fill canister with water and tablet
 - Put on lid and place rocket in pan
 - Count down
 - Measure height
- Materials
 - Paper (lightweight ream)
 - Saran wrap (keep rocket dry)
 - Scissors (5)
 - o Tape
 - Crayons (5)
 - o Markers
 - Stickers (Misc)
 - Paper Towels

- Film canisters or medicine canister (25)
- Tape Measure (1)
- Stop Watch (1)
- Alka-Seltzer tablets (150)
- Water (a gallon or so)
- Trays/pans (10)
- o Tarp (1)

- Supervision (Help)
 - Assistance cutting shapes and taping parts
 - o Assistance launching rockets and measuring height
 - Assistance cleaning pans for reuse
- Room Requirements
 - Tables to assemble rockets
 - o Open space to place tarp, trays and launch rockets
- Award Measurement
 - Most Artistic Rocket
 - Highest distance flown
 - o Best design

"Cargo" Plane

- Purpose
 - Design a paper airplane to carry fixed cargo for the longest distance and carry most cargo for fixed distance.
- Vetted (Time)
- Agenda
 - Design paper airplane (dart versus glider).
 - 3 designs
 - Color paper and fold airplane
 - Load fixed number of coins
 - Fly airplane across room for distance
 - Load maximum coins
 - o Fly airplane fixed distance for most cargo
- Materials
 - 8 ½ x 11 paper Construction paper
 - o Tape
 - Paperclips
 - Crayons, markers, stickers
 - Coins (pennies, dimes, nickels, quarters)
 - Tape measure
 - Duct tape (Distances on the floor)
 - Posters Rocket, Plane, STEM classification
- Supervision (Help)
- Room Requirements
 - Table to color and make paper airplane
 - Open area to fly paper airplane
- Award Measurement
 - Longest flight with fixed number of coins
 - Most coin payload to fly 10 feet
 - Most artistic plane
 - Best design

"Hovering" Balloon Pilot

- Purpose
 - Design and build a balloon with basket that hovers in the air. Apply breeze to pilot balloon to target.
- Vetted (Time)
- Agenda
 - \circ $\;$ Build basket and attach to balloon with string
 - Add weighted materials (paper clips, coins) to get balloon to hover
 - Apply breeze to pilot balloon to target
- Materials
 - o Helium
 - o Balloons
 - String/Yarn
 - o Scissors
 - Hole punch (single)
 - o Dixie cups
 - Decorating Materials (stickers, crayons, markers, etc.)
 - Weighted Objects (Large & Small Paper clips, String)
 - Air Source (battery operated fan)
 - Straw
 - Hand Fan
 - Target or finish line (row of desks to fly above)
- Supervision (Help)
- Room Requirements
 - Tables to assemble baskets to balloons
 - Open area to pilot balloon across room
- Award Measurement
 - Quickest balloon hovere
 - o Quickest balloon pilot to reach target or cross finish line

Water STEM Activities

- What Floats your boat? Buoyancy activity
- Wind Propulsion
- Displacement

What Floats your Boat?

- What Floats Your Boat? Aluminum foil boat activity deals with shape, buoyancy, etc. Can also be used as a contest to see what design can hold the most "cargo". Cargo can be pennies or washers, etc. Does design effect buoyancy?
- Purpose
 - a. See Above
- Vetted (Time) 50min
- Agenda
 - a. Precut Aluminum Foil
 - b. Review potential designs?
 - c. Instructions
 - d. Why does 1 design work better then others?
- Material
 - a. Aluminum Foil
 - b. Plastic Pool (kiddie)
 - c. Towels (cloth rags)
 - d. Tarp
 - e. H2O
 - f. Pennies (500ish)
 - g. Scrap Paper / Pens
 - h. Plastic Pitcher
- Supervision (Help)
 - a. Folding and building ships
 - b. Control of the kids
- Room Requirements
 - a. Access to water

b.

• Award Measurement

Different Designs / Who can hold the most? / Float the longest?

Wind Propulsion

Use ivory soap to carve boats to determine the best design for speed. Talk about hull shape/ sail shape. Have Cubs design boats and race them in the raingutter track.

- Material
 - Ivory soap
 - o Plastic butter knives
 - Paper for sales
 - Scissors
 - o Straws/ popsicle sticks for sail mast

Displacement

- Measuring Displacement and Density of Objects in Water: When does something float or sink? This can be done in a variety of ways using a variety of items. Still have not narrowed it down. A simple way is with different fruits.
 - Purpose
 - a. Measure displacement and volume. Put an object in a container and measure the rising of the water and measure the change. Block of wood, fruit, etc. Capture the displaced water and measure it.
 - Vetted (Time) 50min
 - Agenda
 - a. Container filled to the brim with water
 - b. Put object in water
 - c. Capture and measure water
 - d. See what the density changes are
 - e. Weight the fruit
 - Material
 - a. Containers
 - b. Objects
 - c. Water
 - d. Scale

e.

- Supervision (Help)
- Room Requirements
- Award Measurement
 - a. Object to hover for the longest time (equilibrium)
 - b. Neutral boyancy

Land STEM Activities

- Catapults
- Super Pinewood
- Lava Lamp

Catapults:

- Purpose
 - Design and Build a catapult. Launch projectile and try to knock down increasingly heavier targets
- Vetted (Time)
- Agenda
 - Brief explanation of catapult dynamics
 - Show a few different designs for ideas (Doesn't need to be best configuration)
- Materials
 - Popsicle sticks (10-20 per catapult)
 - Rubber bands (1-2 per catapult)
 - Masking tape
 - Plastic utensils (preferably spoons)
 - String (cotton, or something else easy to tie and manipulate. Not absolutely necessary)
 - Paper (construction and/or printer)
 - Plastic or paper cups (as targets)
 - Mini marshmallows (or another suitable projectile)
 - M&Ms

Jelly Beans

Targets

- Supervision (Help)
 - Assistance taping
 - Assistance measuring
- Room Requirements
 - Tables to assemble catapults
 - Space to shoot catapults
- Award Measurement
 - Best design
 - Heaviest target knocked down
 - Furthest shot
 - Most Accurate
- Additional Information:

http://beam.berkeley.edu/sites/default/files/Mini%20Catapults%20Lesson.pdf

Super Lego Pinewood Derby:

- Purpose
 - Modify Lego Derby car to increase performance (Doesn't have to comply with standard rules)
- Vetted (Time)
- Agenda
 - Explain car dynamics
 - Discuss possible modifications
 - Slimming body
 - adding weight in certain places
 - Scoops
 - Design and make modifications for a pre-fabricated car (Probably best to have teams)
 - Race cars
- Materials
 - Pre-Fabricated cars (as templates)
 - Race Track
 - Legos
 - Weights
 - Designs printed out or up on the projector
- Supervision (Help)
 - Assistance designing modifications
 - Assistance building cars
- Room Requirements
 - Tables to design and make modifications on
 - Space for Race track
 - Award Measurement

0

- Best design
- Fastest car

Lava Lamp

- Purpose
 - Create a Lava Lamp with home supplies
- Vetted (Time)
- Agenda
 - Explain how Lava Lamps work
 - Have a real lamp to show
 - Design bottles
 - Fill with Materials
 - Test reaction
 - See if reaction can be changed based on consistency
- Materials
 - Water
 - Clear plastic bottles 25-50 bottles (drinking water)
 - Vegetable oil (Corey to test)
 - Food Coloring
 - Alka-Seltzer (Or other fizzing tablets)
- Supervision
 - Filling bottles
- Room Requirements
 - Water
 - Tables to assemble Lava Lamps
- Award Measurement
 - Best reaction?
- Additional Information: <u>http://www.sciencekids.co.nz/experiments/easylavalamp.html</u>
 - Can be brought home